Eliminating graphs by means of parallel knock-out schemes

نویسندگان

  • Hajo Broersma
  • Fedor V. Fomin
  • Rastislav Kralovic
  • Gerhard J. Woeginger
چکیده

In 1997 Lampert and Slater introduced parallel knock-out schemes, an iterative process on graphs that goes through several rounds. In each round of this process, every vertex eliminates exactly one of its neighbors. The parallel knock-out number of a graph is the minimum number of rounds after which all vertices have been eliminated (if possible). The parallel knock-out number is related to well-known concepts like perfect matchings, hamiltonian cycles, and 2-factors. We derive a number of combinatorial and algorithmic results on parallel knock-out numbers: for families of sparse graphs (like planar graphs or graphs of bounded tree-width), the parallel knock-out number grows at most logarithmically with the number n of vertices; this bound is basically tight for trees. Furthermore, there is a family of bipartite graphs for which the parallel knock-out number grows proportionally to the square root of n. We characterize trees with parallel knock-out number at most 2, and we show that the parallel knock-out number for trees can be computed in polynomial time via a dynamic programming approach (whereas in general graphs this problem is known to be NP-hard). Finally, we prove that the parallel knock-out number of a claw-free graph is either infinite or less than or equal to 2. © 2006 Elsevier B.V. All rights reserved. MSC: 05C75; 05C35; 05C85; 68R10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0333 - 3590 Parallel knock - out schemes in networks

We consider parallel knock-out schemes, a procedure on graphs introduced by Lampert and Slater in 1997 in which each vertex eliminates exactly one of its neighbors in each round. We are considering cases in which after a finite number of rounds, where the minimimum number is called the parallel knock-out number, no vertices of the graph are left. We derive a number of combinatorial and algorith...

متن کامل

The Computational Complexity of the Parallel Knock-Out Problem

We consider computational complexity questions related to parallel knock-out schemes for graphs. In such schemes, in each round, each remaining vertex of a given graph eliminates exactly one of its neighbours. We show that the problem of whether, for a given graph, such a scheme can be found that eliminates every vertex is NP-complete. Moreover, we show that, for all fixed positive integers k ≥...

متن کامل

Upper Bounds and Algorithms for Parallel Knock-Out Numbers

We study parallel knock-out schemes for graphs. These schemes proceed in rounds in each of which each surviving vertex simultaneously eliminates one of its surviving neighbours; a graph is reducible if such a scheme can eliminate every vertex in the graph. We resolve the square-root conjecture, first posed at MFCS 2004, by showing that for a reducible graph G, the minimum number of required rou...

متن کامل

Knocking Out P k -free Graphs

A parallel knock-out scheme for a graph proceeds in rounds in each of which each surviving vertex eliminates one of its surviving neighbours. A graph is KO-reducible if there exists such a scheme that eliminates every vertex in the graph. The Parallel Knock-Out problem is to decide whether a graph G is KO-reducible. This problem is known to be NP-complete and has been studied for several graph ...

متن کامل

Accelerating high-order WENO schemes using two heterogeneous GPUs

A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 155  شماره 

صفحات  -

تاریخ انتشار 2007